1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
genafreitas084 edited this page 2 weeks ago


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses reinforcement discovering to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key differentiating feature is its support learning (RL) action, which was utilized to fine-tune the design's responses beyond the basic pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually improving both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, implying it's equipped to break down complex queries and reason through them in a detailed manner. This directed reasoning process enables the design to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured reactions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the market's attention as a versatile text-generation model that can be integrated into different workflows such as agents, sensible reasoning and information interpretation tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion criteria, making it possible for effective reasoning by routing inquiries to the most appropriate professional "clusters." This technique permits the model to focus on various problem domains while maintaining general efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient models to imitate the habits and thinking patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this design with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and assess models against crucial safety criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limitation boost, produce a limit increase demand and reach out to your account group.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For guidelines, see Establish consents to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid hazardous material, and evaluate models against crucial security criteria. You can carry out security steps for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and design reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and choose the DeepSeek-R1 design.

The model detail page offers essential details about the design's capabilities, rates structure, and implementation guidelines. You can find detailed usage instructions, including sample API calls and code bits for combination. The model supports various text generation tasks, consisting of material production, code generation, and question answering, utilizing its reinforcement finding out optimization and CoT thinking capabilities. The page likewise consists of implementation alternatives and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, go into a variety of instances (between 1-100). 6. For Instance type, choose your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role permissions, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production releases, you may wish to evaluate these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start using the model.

When the deployment is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in play area to access an interactive user interface where you can experiment with different prompts and adjust design criteria like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For example, material for reasoning.

This is an exceptional method to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play ground offers immediate feedback, assisting you understand how the design reacts to numerous inputs and letting you fine-tune your triggers for optimal results.

You can quickly evaluate the design in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform reasoning using a released DeepSeek-R1 model through Amazon Bedrock the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends out a demand to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 convenient approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you pick the technique that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser displays available models, with details like the company name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows key details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), showing that this model can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the design

    5. Choose the design card to see the design details page.

    The model details page consists of the following details:

    - The design name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you release the design, it's suggested to evaluate the design details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, use the immediately produced name or produce a customized one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the variety of circumstances (default: 1). Selecting proper instance types and counts is important for cost and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the model.

    The implementation process can take numerous minutes to finish.

    When implementation is total, your endpoint status will change to InService. At this point, the model is ready to accept inference demands through the endpoint. You can keep track of the release development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the release is complete, it-viking.ch you can invoke the model using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid undesirable charges, finish the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the model utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed implementations area, locate the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious services using AWS services and sped up compute. Currently, he is concentrated on establishing techniques for fine-tuning and optimizing the reasoning performance of large language designs. In his downtime, Vivek enjoys treking, seeing films, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing options that assist clients accelerate their AI journey and unlock service value.